Udemy Deep Learning for Beginners Core Concepts and PyTorch
Download Free Download : Udemy Deep Learning for Beginners Core Concepts and PyTorch
mp4 | Video: h264,1280X720 | Audio: AAC, 44.1 KHz
Genre:eLearning | Language: English | Size:2.29 GB
Files Included :
1 Introduction.mp4 (72.01 MB)
MP4
2 What is Machine Learning exactly.mp4 (12.43 MB)
MP4
3 Different types of machine learning supervised, unsupervised, and reinforcement.mp4 (25.88 MB)
MP4
4 The big picture.mp4 (24.31 MB)
MP4
5 Deep neural network as features and weights.mp4 (32.69 MB)
MP4
6 Loss functions & training vs inference.mp4 (38.47 MB)
MP4
7 Why deep learning is unintuitive and how to get good at it.mp4 (14.09 MB)
MP4
8 How to make neural networks feel intuitive.mp4 (18.27 MB)
MP4
9 Course overview.mp4 (13.76 MB)
MP4
1 Linear regression and MSE loss.mp4 (17.96 MB)
MP4
10 Scalability and emergent properties.mp4 (25.43 MB)
MP4
11 Recap of the forward pass and brief introduction to backward pass.mp4 (11.29 MB)
MP4
2 Numerical analysis - a k a "trial-and-error".mp4 (18.83 MB)
MP4
3 Network view.mp4 (45.35 MB)
MP4
4 Perceptrons.mp4 (15.53 MB)
MP4
5 The "Deep" in deep learning.mp4 (25.08 MB)
MP4
6 Activation Function.mp4 (17.55 MB)
MP4
7 Overparameterization and overfitting.mp4 (20.02 MB)
MP4
8 Linear Algebra detour.mp4 (33.06 MB)
MP4
9 Vectorization (= parallelization).mp4 (29.26 MB)
MP4
1 The back propagation algorithm.mp4 (14.38 MB)
MP4
10 Computational graph III - backward pass II.mp4 (63.55 MB)
MP4
11 Computational graph IV - backward pass III.mp4 (82.75 MB)
MP4
12 Forward and backward pass recap and wrap up.mp4 (46 MB)
MP4
2 Calculus detour.mp4 (37.1 MB)
MP4
3 Calculus detour II.mp4 (15.88 MB)
MP4
4 Gradient descent.mp4 (100.98 MB)
MP4
5 Calculus detour - partial derivatives and gradient descent.mp4 (42.14 MB)
MP4
6 Calculus detour - the Chain Rule.mp4 (38.25 MB)
MP4
7 Calculus detour - the Chain Rule II.mp4 (36.43 MB)
MP4
8 Computational graph I - forward pass.mp4 (15.06 MB)
MP4
9 Computational graph II - backward pass.mp4 (48.1 MB)
MP4
1 Vanishing gradient problem.mp4 (38.35 MB)
MP4
10 Overfitting II - regularization and drop out.mp4 (25.36 MB)
MP4
11 Softmax activation.mp4 (28.77 MB)
MP4
12 Loss functions.mp4 (11.61 MB)
MP4
13 Cross entropy loss.mp4 (25.98 MB)
MP4
2 Vanishing gradient solutions I.mp4 (22.45 MB)
MP4
3 Vanishing gradient solutions II.mp4 (17.55 MB)
MP4
4 Stochastic and mini-batch gradient descent.mp4 (39.64 MB)
MP4
5 Other optimizers I.mp4 (33.3 MB)
MP4
6 Other optimizers II.mp4 (11.59 MB)
MP4
7 Hyperparameter tuning strategies.mp4 (27.78 MB)
MP4
8 Batch normalization.mp4 (43.88 MB)
MP4
9 Overfitting I - problem and solution overview.mp4 (31.15 MB)
MP4
1 Setting up a coding environment using Anaconda and Jupyter Notebook in Vscode.mp4 (33.57 MB)
MP4
10 Next steps.mp4 (110.56 MB)
MP4
2 Train an MNIST model from scratch in plain PyTorch I.mp4 (96.24 MB)
MP4
3 Train an MNIST model from scratch in plain PyTorch II.mp4 (96.28 MB)
MP4
4 Train an MNIST model from scratch in plain PyTorch III.mp4 (102.03 MB)
MP4
5 Train an MNIST model from scratch in plain PyTorch IV.mp4 (75.63 MB)
MP4
6 Train an MNIST model using PyTorch's nn module I.mp4 (84.94 MB)
MP4
7 Train an MNIST model using PyTorch's nn module II.mp4 (102.12 MB)
MP4
8 Train an MNIST model using PyTorch Lightning I.mp4 (83.01 MB)
MP4
9 Train an MNIST model using PyTorch Lightning II.mp4 (118.43 MB)
MP4
Коментарии
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.