1 - Welcome to the Course (34.76 MB) 2 - Overview of Sectorspecific Use Cases (33.91 MB) 3 - How can you get the most out of this course (27.44 MB) 4 - What is RFM analysis (56.43 MB) 6 - RFM Example (133.45 MB) 10 - Explore the dataset (48.29 MB) 11 - Step 1 PyCaret Setup Function (34.79 MB) 12 - Step 2 CreateModel Function (46.55 MB) 14 - Step 3 Assign Model (21.51 MB) 15 - Step 4 Plot Model (52.88 MB) 8 - PyCaret Clustering Module Workflow (11.18 MB) 9 - Install PyCaret then Load the Dataset (29.18 MB) 17 - What is Sentiment Analysis (39.25 MB) 19 - Sentiment Analysis with Textblob Financial News Dataset (201.27 MB) 20 - Vader Sentiment Analysis (59.96 MB) 21 - Text 2 Emotion (36.99 MB) 22 - Overview of Anomaly Detection (15.77 MB) 23 - Types of Anomalies (39.18 MB) 24 - Project 1 Social Media Monitoring Example (211.89 MB) 25 - Intuition behind Topic Modelling (19.68 MB) 26 - How LDA works (30.37 MB) 27 - Topic coherence Evaluating the results of topic modelling (19.39 MB) 28 - Load the dataset (78.63 MB) 29 - Why the Setup Function is Vital (42.78 MB) 30 - Step One Setup Function (71.54 MB) 31 - Step Two Create Function (26.47 MB) 32 - Step Three Assign Function (40.39 MB) 33 - Step Four Plot Model Function (24.23 MB) 34 - Step Five Evaluate Function (45 MB) 35 - Save Model (5.71 MB) 36 - The type of the data influences the interpretability of results (50.66 MB) 37 - What is Association Rule Mining (51.36 MB) 39 - What is Support (21.87 MB) 40 - Part 1 Explore the dataset (71.56 MB) 42 - Part 2 Create the Model and Examine the rules (75.36 MB) 43 - Part 3 Visualize the results of the Association Rule Mining Exercise (64.29 MB)